State space models with spatial deformation
نویسندگان
چکیده
منابع مشابه
Designing State-space Models with Neural Networks
This paper presents a new state-space identification framework for non-linear systems. In particular, a state-space model structure is designed with the Group Method of Data Handling type neural network. It is assumed that the neurons of the network have tangensoidal activation functions. For such a network type, a new approach based on a bounded-error set estimation technique is employed to es...
متن کاملSwitching State-Space Models
We introduce a statistical model for times series data with nonlinear dynamics which iteratively segments the data into regimes with approximately linear dynamics and learns the parameters of each of those regimes. This model combines and generalizes two of the most widely used stochastic time series models|the hidden Markov model and the linear dynamical system|and is related to models that ar...
متن کاملDiscriminative State Space Models
We introduce and analyze Discriminative State-Space Models for forecasting nonstationary time series. We provide data-dependent generalization guarantees for learning these models based on the recently introduced notion of discrepancy. We provide an in-depth analysis of the complexity of such models. We also study the generalization guarantees for several structural risk minimization approaches...
متن کاملProbabilistic Recurrent State-Space Models
State-space models (SSMs) are a highly expressive model class for learning patterns in time series data and for system identification. Deterministic versions of SSMs (e.g., LSTMs) proved extremely successful in modeling complex timeseries data. Fully probabilistic SSMs, however, unfortunately often prove hard to train, even for smaller problems. To overcome this limitation, we propose a scalabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Environmental and Ecological Statistics
سال: 2012
ISSN: 1352-8505,1573-3009
DOI: 10.1007/s10651-012-0215-2